A Complex Wetland Delineation Case Study in Minnesota, USA

Steve Eggers U.S. Army Corps of Engineers Regulatory Branch St. Paul District

June 5, 2012

US Army Corps of Engineers BUILDING STRONG_®

Anoka Sand Plain

Sandy, Glacial Lake Plain

Pre-Disturbance Condition

Steve D. Eggers

Carex lasiocarpa

Wire-Grass Marsh

- Original land survey (mid-1800s) described delineation site as a "floating marsh"
- Ditching began in late 1800s
- Ditches effective in removing ponding no more "floating marsh"

Phalaris arundinacea (FACW) Phragmites australis (FACW) Typha spp. (OBL)

Site Conditions 2005

Regulatory Purposes

- Delineation involved Federal, state and local regulators as well as several private consulting firms representing landowners
- Determine which areas of the site, if any, meet wetland criteria
- Consensus was that site had hydric soils and was dominated by hydrophytes
- Question was hydrology

Evaluating Disturbed Hydrology

- Drainage equations
- Monitoring well study
- Modeling (e.g., MODFLOW, DRAINMOD)

See USDA Natural Resources Conservation Service. 1997. *Hydrology Tools for Wetland Determination*. Chapter 19, Engineering Field Handbook.

Partially vs. Effectively Drained

Lateral Effect

Effectively drained means that the wetland hydrology criterion is no longer met: inundation or a water table 30 cm or less below the soil surface for at least 14 consecutive days during the growing season in most years

van Schilfgaarde Equation

Differential Drainage Effect

Sedge muck (sapric)

Woody peat (fibric)

Charcoal layer Woody peat (hemic)

Sedge muck (sapric)

Woody peat (fibric)

Sand

Heterogeneity of Organic Soil Deposits

Monitoring Well Designs

Transects of closely spaced monitoring wells perpendicular to a ditch can measure actual lateral effect. Data can be used to calibrate drainage equations and/or groundwater models.

Monitoring Well Data

Monitoring Well Data

Final Wetland Delineation

Conclusion

- In this case of organic soils, the van Schilfgaarde equation did not work well for estimating scope and effect of ditches
- The monitoring well study provided the most reliable data although very shortterm data was collected (<3 years)
- Regulators , consultants and landowners reached concurrence on the delineation

